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Abstract

Recently, several approaches have emerged for generating neural representations with
multiple levels of detail (LODs). LODs can improve the rendering by using lower reso-
lutions and smaller model sizes when appropriate. However, existing methods generally
focus on a few discrete LODs which suffer from aliasing and flicker artifacts as details
are changed and limit their granularity for adapting to resource limitations. In this paper,
we propose a method to encode light field networks with continuous LODs, allowing for
finely tuned adaptations to rendering conditions. Our training procedure uses summed-
area table filtering allowing efficient and continuous filtering at various LODs. Further-
more, we use saliency-based importance sampling which enables our light field networks
to distribute their capacity, particularly limited at lower LODs, towards representing the
details viewers are most likely to focus on. Incorporating continuous LODs into neural
representations enables progressive streaming of neural representations, decreasing the
latency and resource utilization for rendering.

1 Introduction
In the past few years, implicit neural representations [29, 31] have become a popular tech-
nique in computer graphics and vision for representing high-dimensional data such as 3D
shapes with signed distance fields and 3D scenes captured from multi-view cameras. Light
Field Networks (LFN) [40] are able to represent 3D scenes with support for real-time ren-
dering as each pixel of a rendered image only requires a single evaluation through the neural
network.

In computer graphics, levels of detail (LODs) are commonly used to optimize the ren-
dering process by reducing resource utilization for smaller distant objects in a scene. LODs
prioritize resources to improve the overall rendering performance. In streaming scenarios,
LODs can prioritize and reduce network bandwidth usage. While LODs for implicit neural
representations are beginning to be explored [6, 7, 22, 24, 28], most existing work focuses
on offering a few discrete LODs which have three drawbacks for streaming scenarios. First,
with only a few LODs, switching between them can result in flicker or popping effects as
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Figure 1: Our light field network features continuous levels of detail, enabled by training
with summed-area table filtering and saliency-based importance sampling. Continuous levels
of detail enable the interactive streaming of light fields with smooth transitions and finely
tuned adaptivity.

there are significant jumps from one LOD to the next. Second, discrete LODs require stream-
ing in larger model deltas which take longer and create spikes in network activity. Third,
transitioning across successive LODs can require rendering multiple levels and impact the
rendering performance. Continuous LODs resolve these challenges by allowing smoother
transitions with finer quality adaptation and size differences across LODs. Additionally,
they allow rendering engines to dynamically adjust the rendering quality based on real-time
bandwidth and compute resource availability without needing the viewer to select the LOD.

In this paper, we develop a method to achieve continuous levels of detail for neural
representations, focusing on light field networks. In summary, our light field networks with
continuous LODs have the following benefits:

• Continuous LODs allow us to smoothly transition across LODs without popping arti-
facts,

• In streaming scenarios, the LOD can be increased or decreased by downloading only
one additional row and column of weights per layer, allowing lower latency transitions
with smoother network patterns, and

• Importance sampling allows LFNs to focus their capacity on the most salient regions
of the light field, allowing details to resolve at lower LODs.

2 Background and Related Works
In this section, we provide some background on general neural fields and more specifically
light field networks. We then overview recent methods for achieving multiple levels of detail
with neural fields. For a general overview of neural rendering, we refer readers to Tewari et
al. [44].

2.1 Implicit Neural Representations
Coordinate-based neural networks have been used to encode various signals such as im-
ages [39], signed distance functions [31], radiance fields [1, 3, 29], and light fields [12, 40].
These neural network-based models are often referred to as implicit neural representations
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or neural fields. Among these representations, neural radiance fields (NeRFs) and light field
networks (LFNs) are both able to represent colored 3D scenes with view-dependant appear-
ance effects.

Neural radiance fields (NeRFs) [29] employ differentiable volume rendering to encode
a 3D scene into a multi-layer perceptron (MLP) neural network. By learning the density
and color of the scene and using a positional encoding, NeRF can perform high-quality view
synthesis, rendering the scene from arbitrary camera positions, while maintaining a very
compact representation. However, the original NeRF implementation has many drawbacks,
such as slow rendering times, which has limited its practicality. With an incredible amount
of interest in neural rendering, many follow-up works have been proposed to improve NeRFs
with better rendering performance [9, 35, 46], better quality [1], generalizability [17], and
deformations [32, 33, 34]. Additionally, feature grid methods [30, 46] enable learning scenes
in seconds and rendering in real-time. Importance sampling [48] can achieve faster learning
with fewer training rays.

NeRF
Position x

Direction d

Density σ

Color c
LFN Color cPlücker Ray

  (d, x ✕ d)

Figure 2: LFNs directly predict the RGB color for each ray in a single inference using
Plücker coordinates, avoiding the dozens to hundreds of inferences required by NeRFs.

Light Field Networks Light Field Networks (LFNs) [4, 5, 12, 27, 40] encode light fields [16,
23] by directly learning the 4D variant of the plenoptic function for a scene. Specifically,
LFNs directly predict the emitted color for a ray which eliminates the need for volume ren-
dering, making light fields much faster to render compared to other neural fields. Earlier
work in light field networks focus on forward-facing scenes using the common two-plane
parameterization for light fields. SIGNET [12, 13] uses Gegenbauer polynomials to encode
light field images and videos. NeuLF [27] proposes adding a depth branch to encode light
fields from a sparser set of images. Plücker coordinates have been used [15, 40] to represent
360-degree light fields.

2.2 Levels of Detail
Several methods have been proposed for neural representations with multiple levels of de-
tail. NGLOD [41] encode signed distance functions into a multi-resolution octree of feature
vectors. VQAD [42] adds vector quantization with a feature codebook and presents results
on NeRFs. BACON [28] encodes LODs with different Fourier spectrums for images and
radiance fields. PINs [22] develop a progressive Fourier feature encoding to improve recon-
struction and provide progressive LODs. MINER [36] trains neural networks to learn regions
within each scale of a Laplacian pyramid representation. Streamable Neural Fields [7] pro-
pose growing neural networks to represent increasing spectral, spatial, or temporal sizes.
Progressive Multi-Scale Light Field Networks [24] train a light field network to encode light
fields at multiple resolutions.

To generate arbitrary intermediate LODs, existing methods blend outputs across discrete
LODs. With only a few LODs, the performance does not scale smoothly since the next dis-
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crete LOD must be computed entirely. Our method offers continuous LODs with hundreds
of performance levels allowing for finer adaptation to resource limitations.

3 Method
Our method primarily builds upon Light Field Networks (LFNs) [40]. Specifically, we rep-
resent rays r in Plücker coordinates (rd ,ro × rd) which are input to a multi-layer perceptron
(MLP) neural network without any positional encoding. The MLP directly predicts RGBA
color values without any volume rendering or other accumulation. Each light field network
is trained to overfit a single static scene.

3.1 Arbitrary-scale Arbitrary-position Sampling with Summed Area
Tables

½ Scale ½ Scale ½ Scale

Bilinear 
Sample

Bilinear 
Sample

Full-resolution Pixels

(a) Discrete Scale Sampling

Sample Sample

Full-resolution Pixels

Summed Area Table

(b) Summed Area Table Sampling

Figure 3: An illustration of discrete and summed-area table sampling. (a) Sampling from
a discrete resolution requires linear interpolation from a downsampled image to the target
scale and position. (b) Summed area tables allow us to sample at both arbitrary scales and
positions without significant additional memory or compute.

In order to reduce aliasing and flickering artifacts when rendering at smaller resolutions,
e.g. when an object is far away from the user, lower levels of details need to be processed
with filtering to the appropriate resolution. In prior work, multi-scale LFNs [24] are trained
on images resized to 1/2, 1/4, and 1/8 scale using area downsampling. During training, rays
are sampled from the full-resolution image while colors are sampled from lower-resolution
images using bilinear sampling. While training on lower-resolution light fields yields multi-
scale light field networks, the bilinear subsampling of the light field may not provide accurate
filtered colors for intermediate positions. As shown in Figure 3, colors for higher-resolution
rays get averaged over a larger area when performing bilinear subsampling in between low-
resolution pixels.

Another method for generating multi-scale light fields is to apply to filter at full resolution
to get a spatially accurate anti-aliased sample for each pixel location. Naively precomputing
and caching full-resolution copies of each light field image at each scale would significantly
increase memory usage. Computing the average pixel color for each sampled ray at training
time would require additional computation. Summed area tables [8, 26] can be used to
efficiently sample pixels at arbitrary scales and positions, allowing us to sample from filtered
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versions of the training image without caching multiple copies. Sampling from a summed
area table is a constant time operation, giving us an average over any axis-aligned rectangular
region with only four samples. With additional samples, summed-area tables can also be
used to apply higher-order polynomial (e.g. cubic) filters [18, 19] or Gaussian filters [20] for
even better anti-aliasing, though we only use box filtering in our implementation.

3.2 Continuous Levels of Detail

LO
D 1.

0

LO
D (1

, 2
]

LO
D (N

-1,
 N

]

Plücker Ray

RGBA

(a) Variable-size layers. By assigning a level
of detail to every network width, we can
achieve hundreds of performance levels.

x +

LayerNorm
ReLU

Variable-Size Linear Layer

Neuron Masking

⊙
111 1 1 1

(b) Neuron masking. To render at continuous
LOD ℓ, we use weights corresponding to LOD
⌈ℓ⌉ and apply alpha-blending to continuously
fade-in features produced by the new neuron
with α = ℓ−⌊ℓ⌋ at each layer.

Figure 4: Illustrations of our method to achieve continuous levels of detail.

While previous neural field methods offer static levels of detail corresponding to fixed
scales [6, 24, 42] or fixed spectral frequency bands [7, 28], our goal is to generate a finer
progression with continuous levels of detail. Continuous levels of detail enable smoother
transitions and more precise adaptation to resolution and resource requirements.

Following existing work [7, 24, 47], we encode levels of detail using different widths
of a single multi-layer perception neural network. Unlike Mip-NeRF [1, 2], this enables
optimized performance with smaller neural networks at lower levels of detail. However, for
continuous levels of detail, we propose two changes. First, we map the desired level of detail
to every available width to extend a few levels of detail to hundreds of levels of detail as
shown in Figure 4a. Second, we propose neuron masking which fades in new neurons to
enable true continuous quality adjustments.

LOD to Scale Mapping Li et al. [24] train multi-scale LFNs which use width factors 1/4,
2/4, 3/4, and 4/4 (128, 256, 384, 512 widths) to encode 1/8, 1/4, 1/2, and 1/1 scale light
fields respectively. To extend this to arbitrary widths, we formulate the following equations
which describe the correspondence between network width w and light field scale s:

s = 2ˆ(4w−4) (1)
w = (1/4)∗ (log2(s)+4) (2)

By using the above equations, we can assign a unique scale to each width sub-network in
our multi-scale light field network. Since this is a one-to-one invertible mapping, we can
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also compute the ideal level of detail to use for rendering at any arbitrary resolution. In our
experiments, we use a minimum width of 25% of nodes corresponding to a scale of 1/8 to
ensure a reasonable minimum quality and training image size. As an example, for a network
with 512-width hidden layers, the lowest level of detail uses only 128 neurons of each hidden
layer while the highest uses 512.

Neuron Masking Since neural networks have discrete widths, it is necessary to map con-
tinuous levels of detail to discrete widths. Hence, we propose to use neuron masking to
provide true continuous levels of detail with discrete-sized neural networks. As weights
corresponding to each new width become available, we propose to apply alpha-blending
on neurons corresponding to the width. This alpha-blending enables features from existing
neurons to continuously transition, representing any intermediate level of detail between the
discrete widths. Given feature f and fractional LOD α = l −⌊l⌋, the new feature f′ with
neuron masking is the element-wise product:

f′ = (1, ...,1,α)⊤⊙ f (3)

3.3 Saliency-based Importance Sampling
With continuous LODs representing light fields at various scales, the capacity of the LFN
is constrained at lower LODs. Hence, details such as facial features may only resolve at
higher levels of detail. To maximize the apparent fidelity, the capacity of the network should
be distributed towards the most salient regions, i.e. the areas where viewers are most likely
to focus. We propose to use saliency-based importance sampling which focuses training on
salient regions of the light field. For all foreground pixels, we assign a base sampling weight
λ f and add a weight of λs∗s based on the pixel saliency s. Specifically, for a given foreground
pixel x in a training image with saliency s, we sample from the probability density:

p(x) = λ f +λs ∗ s (4)

In our experiments, we use (λ f ,λs) = (0.4,0.6) which yields reasonable results. At
each iteration, we sample 67% of rays in each batch from foreground pixels using the above
density. The remaining 33% of rays are uniformly sampled from background pixels.

4 Experiments
We conduct several experiments to evaluate whether our light field networks with continuous
LODs overcome the problems with discrete LODs. We also conduct quality and performance
evaluations to determine the compute and bandwidth overhead associated with continuous
LODs.

4.1 Experimental Setup
We conduct our experiments using five light field datasets. Scenes are captured using 240
cameras with 40×6 layout around the scene and a 4032×3040 resolution per camera. Each
dataset includes camera parameters extracted using COLMAP [37, 38] and is processed with
background matting. Of the 240 images, we use 216 for training, 12 for validation, and 12
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for testing. We generate saliency maps using the mit1003 pretrained network1 of Kroner et
al. [21].

For our model, we use an MLP with nine hidden layers and one output layer. Each
hidden layer uses LayerNorm and ReLU. We use a minimum width of 128 and a maximum
width of 512 for variable-size layers. Our models are trained using a squared L2 loss for the
RGBA color with 8192 rays per batch. In all of our experiments, we train using the Adam
optimizer with the learning rate set to 0.001 and exponentially decayed by γ = 0.98 after
each epoch. We train for 100 epochs. Each of our models is trained using a single NVIDIA
RTX 2080 Ti GPU. Our PyTorch implementation and processed datasets are available at
https://augmentariumlab.github.io/continuous-lfn/.

4.2 Ablation Experiments

Without Saliency With Saliency Without Saliency With Saliency

Figure 5: Lower LOD ablation results show
the effects of our saliency-based importance
sampling. With importance sampling, fea-
tures such as eyes and mouths in the salient
regions resolve at earlier, lower LODs.

Figure 6: Neuron masking enables generat-
ing continuous levels of detail from discrete
model widths. In the figure above, we see
that one leg of the cart expands as the frac-
tional level of detail α fades in new neurons.
This effect is better seen in the accompanying
supplementary video.

Our ablation experiments evaluate how each aspect of our method affects the final ren-
dered quality. First, we replace the discrete resolution sampling in discrete-scale light field
networks [24] with our summed area table sampling. Next, we add continuous LODs training
which is enabled by arbitrary-scale filtering with summed-area tables. Finally, we compare
the prior two setups with our full method which also includes saliency-based importance
sampling.

4.3 Transitions across LODs
With continuous LODs, our method allows smooth transitions across LODs as additional
bytes are streamed over the network or as the viewer approaches the subject. To quantita-
tively evaluate the smoothness of the transitions, we use the reference-based temporal flicker
metric of Winkler et al. [45]. This flicker metric first computes the difference d between the

1From https://github.com/alexanderkroner/saliency
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Figure 7: Plots showing the effects of transitioning across LODs. Transitioning with discrete
LODs leads to larger network traffic spikes and more flickering.

processed images and reference images for two consecutive frames. Next, a difference image
c = dn −dn−1 is computed across consecutive frames. The 2D discrete Fourier transform of
the image c is computed and values are summed based on the radial frequency spectrum into
low and high-frequency sums: sL and sH . Finally, the flicker metric is computed by adding
these together: Flicker = sL + sH .

We compare against three discrete-scale baselines with 4, 8, and 16 levels of detail, with
8 and 16 LODs trained using summed-area table sampling. In our continuous LOD case,
we render views at the highest LOD corresponding to each discrete width (i.e. LOD 1.0,
2.0, ..., 385.0), using the static ground truth view as the reference frames. Flicker values are
computed for each LOD using the transition from the next lower LOD and then averaged
across all test views. Our flicker results are shown in Figure 7b. With only four LODs,
the discrete-scale LFN method has three transitions, each with large model deltas (up to 3.5
MB) and high flicker values. Additional levels of detail reduce the model delta sizes and the
flicker values with our continuous LOD method minimizing the model delta sizes and the
flicker values. With our method, the LOD can be transitioned in small (≤ 32 KB) gradual
steps.

4.4 Rendering Quality

Model 1/8 1/4 1/2 1/1

Discrete-scale LFN 29.34 29.68 28.39 27.41
+ SAT filtering 29.77 29.99 28.54 27.46
+ Continuous LOD 27.87 29.77 28.38 27.38
+ Importance Sampling 28.06 29.79 28.44 27.40

(a) PSNR (dB)

Model 1/8 1/4 1/2 1/1

Discrete-scale LFN 0.8809 0.8763 0.8503 0.8465
+ SAT filtering 0.8898 0.8806 0.8513 0.8466
+ Continuous LOD 0.8370 0.8743 0.8484 0.8460
+ Importance Sampling 0.8380 0.8751 0.8487 0.8455

(b) SSIM
Table 1: Quantitative Training Ablation Results at 1/8, 1/4, 1/2, and 1/1 scales. Each scale is
evaluated at its corresponding LOD.

Quantitative PSNR and SSIM results are shown in Table 1. First, we see that adding
summed-area table filtering to discrete-scale light field networks with four scales results in
slightly improved PSNR and SSIM results while enabling arbitrary-scale sampling. Training
a continuous LOD network impacts the performance at the original four LODs but allows us
to have continuous LODs. Adding importance sampling allows us to focus on salient regions
without significantly impacting the quantitative results.
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Figure 8: Plots showing our quantitative evaluation results. With continuous LODs, the LOD
can be dynamically adjusted to maximize the quality based on available resources.

Qualitative results of our saliency-based importance sampling ablation are shown in Fig-
ure 5. We see that details along faces appear at earlier LODs when using saliency for im-
portance sampling. All of these details resolve at the highest LODs with and without using
importance sampling.

4.5 Rendering Performance

We evaluate the rendering performance by rendering training views across each LOD. For
our rendering benchmarks, we use half-precision inference and skip empty rays with the
auxiliary network which evaluates ray occupancy. Rendering performance results across the
LODs are shown in Figure 8b. We observe that as the LOD increases according to the width
of the neural network, rendering times increase as well. When rendering from a discrete-
scale light field network with only four LODs, the user or application would need to select
either the next higher or lower LOD, compromising on either the performance or the quality.
With continuous LODs, software incorporating our light field networks would be able to
gradually increase or decrease the LOD to maintain a better balance between performance
and quality. In cases where the ideal model size is not known, continuous LODs allow
dynamic adjusting of the LOD to satisfy a target frame rate. In our PyTorch implementation,
we observe that LODs with odd model widths have a slower render time than LODs with
even model widths. LODs with model widths that are a multiple of eight perform slightly
faster than other even model widths.

5 Discussion

By requiring light field networks to output reasonable results at each possible hidden layer
width and incorporating neuron masking, we can achieve continuous of LODs. However,
this applies additional constraints on the network as it needs to produce additional outputs.
In our experiments, we observe slightly worse PSNR and SSIM results at the specific LODs
corresponding to the 1/8 and 1/4 scales compared to the discrete-scale LFN which is trained
with only four LODs. This is expected due to the additional constraints and less supervision
at those specific LODs. The goal of our importance sampling procedure is to improve the
quality of the salient regions of the light field rather than to maximize quantitative results.
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Light field networks require additional cameras compared to neural radiance fields due
to the lack of multi-view consistency prior provided by volume rendering. Hence, training
light field networks requires additional cameras or regularization [14] compared to NeRF
methods. Furthermore, light field networks do not use positional encoding [43] and represent
high-frequency details as faithfully as NeRF methods. As the primary goal of our work is
to enable highly granular rendering trade-offs with more levels of detail, we leave these
limitations to future work.

6 Conclusion

In this paper, we introduce continuous levels of details for light field networks using three
techniques. First, we introduce summed area table sampling to sample colors from arbitrary
scales of an image without generating multiple versions of each training image in a light
field. Second, we achieve continuous LODs by combining arbitrary-width networks with
neuron masking. Third, we train using saliency-based importance sampling to help details in
the salient regions of the light field resolve at earlier LODs. With our method for continuous
LODs, we hope to make light field networks more practical for 6DoF desktop and virtual
reality applications [10, 11, 25].
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